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Abstract

Let GeC and D<C be simply connected domains such that 0e GnD. Denote by
P, neN = {1,2, ...}, the set of all complex polynomials of degree at most n. Let

P.(G, D) = {pePy: p(0) = 0,p(G)=D}.
Our main purpose is to find how large, i.e., how close to D, the “maximal polynomial range”

Dy(G) = U r(G)

pePy(G,D)

can be. We consider G to be a quasidisk and D to be an arbitrary domain whose boundary
consists of more than two points.
Published by Elsevier Science (USA).
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1. Introduction and main result

The notion of maximal ranges of polynomial spaces in the unit disk D =
{w: |w|<1} has been introduced in [5] and studied in [2,4,6,7,11,12] (for the
survey of the various aspects of this notion, see [3]). This idea led to a unified
approach to different inequalities for polynomials with constrains to their images
of D.

In this paper we generalize this concept by considering a quasidisk G < C (see [13])
instead of D.
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Let GeC and D < C be simply connected domains such that 0e Gn D. Denote by
P,, neN = {1,2, ...}, the set of all complex polynomials of degree at most n. Let

Pu(G, D) = {pePy: p(0) = 0,p(G)=D}.

Our main purpose is to find how large, i.e., how close to D, the “maximal polynomial
range”’

p(G) = | pG)

peP,(G,D)

can be. We consider G to be a quasidisk, i.e., a finite domain bounded by a
quasiconformal curve L := JG. A geometric characterization of quasiconformal
curves can be stated as follows (see [13, p. 100]): L is a quasiconformal curve iff there
exists a constant ¢>0, depending only on L, such that for z,z,€ L,

min{diam L', diam L"} <c|z; — z,|, (1.1)

where L' and L” denote the two arcs that L\{z;,z,} consists of and diam E is the
diameter of a set E<C. Thus, we exclude regions with cusps on the boundary.

Let the boundary I' = 9D of D consists of more than two points, and let Q .= C\G
and A = C\D denote, respectively, the exterior (in the extended complex plane
C = Cu{w}) of G and D. Next we introduce conformal mappings

O:Q-A, P(w)= o0, (0)>0,

¢:G-D, $(0)=0, ¢'(0)>0,

$:D->D, ¢0)=0, ¢'(0)>0,
and the inverse mappings ¥ = ® ',y = ¢ ' and = ¢'. For the homeomorph-
ism g = ¢o¥ of the unit circle T = {w: |w| = 1} onto itself we define

%(6) = (6, G) = min|g(w) — g(we”)|, 0<é<m.

The function o(d) depends on geometric properties of G; we mention two examples.
In the case G = D we have

%Sa(é, D) :2sing<5. (1.2)

The case of a piecewise smooth curve L is less trivial. Following [14], a smooth
Jordan curve L is called Dini-smooth if the angle fi(s) of the tangent, considered as a
function of the arc length s, satisfies

|B(s2) — B(s))[<h(s2 —s1)  (s1<s2),

where A(x) is an increasing function for which

/01 de< 0.

X

We call a Jordan arc Dini-smooth if it is a subarc of some Dini-smooth curve.
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It follows from well-known distortion properties of conformal mappings ¢ and ¥
(see [14, Chapter 3]) that if L consists of a finite number m of Dini-smooth arcs which

meet under inner angles f;n, 0<f;<2, j=1,...,m with respect to G, then
1
C—5ﬁ<a(5)<c1 o, (1.3)
1
where
2 — min1<j<m ﬁ
=B(G) =max{ ——— "1 1 1.4
f=HS) { mini<j<m ﬁj (14)

and ¢; = ¢;(G)>1 is a constant.
Note that according to (1.4), f>1.

Following [2] we relate D,(G) to the images l;S(D), where

Po(z) = ((1 —s)z), O<s<l, zeD.

Theorem. There exist constants co>0 and nyeN that depend only on G, such that

l/;(‘oot(l/n)(nj))Cl)n(G)v n>nyp. (15)

If we let G = D in the theorem above and take into account (1.2), then we obtain
the second part of [2, Theorem 1] which is sharp for all unbounded domains [2,
Theorem 2] and some bounded domains [3, Theorem 14].

Observe that for any quasidisk G,

a(0)<cd, 2 =c(G)>0, 0<d<m.

For domains with piecewise Dini-smooth boundary the above property follows from
(1.3) and (1.4). For general quasidisks this property can be easily proved by applying
the general distortion theory for conformal mappings, see [1]. From the comparison
of the theorem above and [2, Theorem 1] we see the surprising fact that the estimate

of the size of D,(G), measured in terms of function 1, is worst for the unit disk. The
proof of the theorem above is a straightforward combination of the following two
lemmas. Let

Ls = {z: |®(z)| = 1+6}, 0>0.
Denote by ¢4 the conformal mapping of the domain G; := int Ls, onto D normalized

by the conditions ¢;(0) =0, ¢5(0)>0. Here and in the sequel “int” means the
interior of the indicated Jordan curve. For 6 >0 and real 0 set

fr5.,9(z) = &[eie(ﬁbw(z)}» z€ Gys.

Lemma 1. There exist constants ¢3>0 and ny eN with the following property:
For any neN, n>ny, § =6, = c3/n and ze G there is a polynomial ps g ,-€P,(G, D)
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such that
S50(2)€pson-(G).

For the proof, see Section 3.
In order to state the second lemma we introduce a local version of the function
(0). For 0<dé<m, ze L = 9G and g == ¢po¥ set

2:(8) = lg(e®p(2)) — g(d(2))I-

Lemma 2. For any 0<0<1 and ze L the inequality
1= 1os(2)[ < carz(0) (1.6)

holds with some constant c4 = c4(G)>0.

For the proof, see Section 2.

Proof of Theorem. From Lemma 1 we conclude that for n>n,,

D> | fopna(©) = ({ws i< maxlgne n(2) | )

0<0<2n

In view of Lemma 3 below and the reasoning in the beginning of Section 2 the
function o(0) satisfies

a(20)<csa(d), 0>0,

with some constant ¢s = ¢s(G)>0. Hence, Lemma 2 for sufficiently large n yields

D,(G) Dx/?({w: w| <1 — camin o (%) })
i)

We conclude this section with additional notations we use throughout the rest of the
paper. Let ¢, ¢y, ¢z, ... and m, k,[,seN be sufficiently large (> 1) constants. Let also
&, &1, ... be sufficiently small (< 1) positive constants. The same symbol (e.g. ¢;) may
mean different constants in different relations.

We use for a>0 and b>0 order inequality a<b if a<cb. We also use a=b for
a<b and b=<a simultaneously.

For subsets 4, B C we set

d(A,B) = dist(4,B) = inf |z—{].
zeA,leB
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2. Quasiconformal mappings

Let L be a K-quasiconformal curve (see [13]). It is well known that ¢ and ® can be
extended to K?-quasiconformal homeomorphisms of C onto itself. Slightly abusing
the notation, we continue to write ® : C— C for the latter and denote by ¢* : C—C
the former. In view of Lemma 3 below we prefer to work with quasiconformal
homeomorphisms of the complex plane that preserve the point at co. The mapping
O satisfies this condition by definition. If ¢*(c0) = oo, then for the inner conformal
mapping ¢ we have the necessary quasiconformal extension ¢ = ¢*. If ¢p*(o0) =
wo # oo we modify ¢* in the following way.

The function /ip(z) = hp(x + iy) == x + iby, where 1 <b< o0 is a parameter, maps
the upper half plane, b-quasiconformally, onto itself. Combining this function with
Mobius transformations we construct a (Jwo| + 1)/(Jwo| — 1) =: Kj-quasiconformal
homeomorphism p: A—A with u(wy) = co and u(w) =w on the unit circle T.
Hence, po¢® is the required K, = K?Kj-quasiconformal extension of ¢. We denote
pued* also by ¢. The inverse mappings ¥ :=¢ ' and ¥ :=® ! are also
quasiconformal with coefficients of quasiconformality K> and K?, respectively.

Next we recall one auxiliary fact from the theory of quasiconformal mappings.

Lemma 3 (Andrievskii et al. [1, p. 97]). Suppose a function w=F({) is a K-
quasiconformal mapping of the extended complex plane onto itself, with F(o0) = 0.
Assume also that ;e C,w; = F((;),j = 1,2,3. Then,

(i) the conditions |{| — (| <ca1lly — (3] and |wy — wa| < calw) — ws| are equivalent,
besides, the constants ¢\ and ¢, are mutually dependent and also depend on K

() if [{1 — Gl < el = &), then

K

-4
-0

wy —w 1/
1 3
<

S

wy — w3

<c

1 3
w; — wy w; — wp
where & = ¢1(c1, K), c3 = ¢3(c1, K).

As a first direct consequence of Lemma 3 we formulate the following statement.
Let F be as in Lemma 3, and let zy,z;,{;,{, €C be such that

181 — Gzt — 22|z = G-

Then,

(2.1)

Observe that the level curve L; is K>-quasiconformal. This condition ensures that ¢,
can be extended quasiconformally to C such that ¢;(o0) = co. We do this in the
following way.
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For zeQs = C\G;s we set

. (1+490)
s(2) = |ps| P
$5(2) ¢< ( o0 >>

This function is a K?-quasiconformal mapping of Qs onto A, whose boundary values
coincide with boundary values of ¢;.

If ¥(0)=:& =0, then ¢;(00) = oo and we necessarily obtain the K; = K-
quasiconformal extension of ¢4 by setting ¢5 = ¢ in Qs.

If & #0 we modify ¢ as follows. By Schwarz’s lemma, applied to the function
sy, we obtain

o s (o)l <|p(&o)l-

|¢5(00)]
Therefore, if we reason as in the beginning of this section we derive that there exists a
quasiconformal mapping pus : A—A with ps(w) =w on T and ps(¢;(0)) = o,
whose coefficient of quasiconformality is at most

93(c0)l +1_1+19(%0)
93(o0)[ =1 1= 9

The function ¢5:= pso¢p; in Qs is a required K; = K|(G, K)-quasiconformal
extension of ¢;.

The quasiconformal extensions above show that to study the metric properties of
® and ¢5 we can use Lemma 3. Moreover, all constants in this lemma depend only
on G and K and they are independent of §.

Let S=S;:=¢s(L). For teD\{0} we set ¢y :=1t/|tf|]. Note that for any
1eT;t,teSN[0,7] we have

It — 1=t — 1. (2.2)

Indeed, without loss of generality we may assume that 7=1. Since Ji =
[-1,1]u{z: |t] =1, £Im >0} are Ky-quasiconformal (recall the Ahlfors criterium
(1.1)), the curves ®or5(J ) are KoK>K;-quasiconformal. Therefore, by (1.1) we have

|[Dotp5(11) — Dot (1) [ = [@otf5(22) — Doy (7)),

from which (2.2) follows by virtue of Lemma 3.

For teD\{0}, denote by s the point of [0, r7] NS with the smallest modulus. The
discussion above shows that

|[Dey5(ts) — Do (7)| SO [E — Doy (7))
holds for any e T. Hence, setting & so that
|$5oF(8) — 1| = d(1,9),
and making use of Lemma 3, we obtain
|t — 15|xd(z, S). (2.3)
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Furthermore, from Lemma 3, for teT and 6 <1 we obtain

5<2 Dot (15) — Pos(t)
Doifr5(0) — Doy s(t)

Next, for any 7,we T with |t — w|<2|t — t5| we have

&1

ST gl (2.4)

~lo—1

= = — . 23)
Indeed, setting
vi=Oofs(t), vs = Doyfys(ts),

n=®ops(w), ng=Dohs(ws),
and using Lemma 3 we obtain

v —nlso=|v—vs|=|n—nsl.
Furthermore, since

v —vs|=n—vs[=[n—nsl,
an application of Lemma 3 gives

|t — ts|=<|w — 15| =< |w — wg].
Our next objective is to show that for any t,weT with |t —w|>|t — 15| the
inequality

lw—ws| < |t —ts[*]t — w|' ™ (2.6)
holds.

Indeed, by making use of Lemma 3 for points v,vs,#, 7y, introduced above we
have

v —nl=o=v—vs|=|n —nsl.
Thus, by Lemma 3
n—1ns
n—v
which gives (2.6) with ¢ := 3.

2y ygl® &

v—rn

T—1Ts§

N i

w— wg
el

w—1 T—Ww

Proof of Lemma 2. Let ¢ = ¢5(z). We may assume that ¢ is sufficiently small, so that
the constructions below are well defined. For simplicity we also assume that ¢ty =
1,t=1tg (cf. 2.2)). Set h =1 —1¢.

According to (2.3), (2.5) and (2.6) there exist constants ¢ and ¢; such that the curve

{re” :r=cih,|0|<h} U {re"(’: r= 01h8|9|17£7h<|9|<g}

. 1-¢
v {re’g: r=c (g) Ph*’,g<|0|<n}

lies in the interior of S.
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Set y = ¢y, t1 =1 —4cih, y(t) =&, x(t1) =: &, Ys5(t1) =: z;. Then Lemma 3
gives

|z — z1| =<z — Y5(1)|=<d(z, Ls) <|z — ‘P(ei‘sd)(z))|7
and therefore
| — &1 =0.(0). (2.7)

Denote by I'g = ['o(z, #1, int S) the family of all cross-cuts of int S which separate
points ¢ and #; from 0 in int S.
Observe that inequality (1.6) follows from the estimate

1 1

Indeed, taking into account the conformal invariance of moduli (see [13]), [2, Lemma
8], (2.7) and (2.8), we have

1

! ogﬁ— < Hog gt <m(1(T))

|C*fl|

1
m(T) nlog

h+c2>

from which (1.6) follows.
In order to prove (2.8) we first simplify (geometrically) our reasoning by using the
auxiliary Mobius transformation
v(t) =

1—1
1+

Then if we set v(¢) =: u,v(#;) =: u;, we see that

h
E <u<ha
2c1u<2cith<u; <4cih<8ciu<l1.

Moreover, there exist constants ¢; and ¢4 such that the function

o(r) ::gmax{el, 1 — ¢4 (é)}

satisfies
{re: uy<r<1,|0|<v(r)} cv(int S).
Inequality (2.8) follows directly from the estimate
1 1
m(Ty) = m(I") < —10g;+6‘5, (2.9)
T

where I = v(Tp).
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In order to prove (2.9) we consider the following functions:
p1(z) =c¢6, |2]<2, Rez=0,

C
02(2)257, |z|<2u;, Rez=0,

p0) = 3 1

————  u;<|z|<1, Rez=0.
|z|e=™)]z|

We extend these functions to be 0 in the rest of the complex plane, and we set
p(z) = max{p,(2), p2(2), p5(2)}, zeC.
We claim that constants ¢s and ¢7 can be chosen so that, for any yeI”, the inequality
/ p(2)|dz| =1 (2.10)
Y
holds.

To verify (2.10) we consider three particular cases. Let |y| denote the length of y.
Let yn T #0. Then |y|>¢,. If we take ¢ = 1 + 1/¢;, then

/ p(2)|dz| = 1. (2.11)
Let ym/{z: |z| = |u1]} #0. Then |p|>e3u. Taking ¢; = 1+ 1/¢3, we have
/ p,(2)|dz| > 1. (2.12)
y
Let y={z: u; <|z|<1}, and

Fmax = SUp |z|,  Fmin == inf|z|.
zey €y

If Fmax =€"rmin, then there exists a y, with y, <y, which connects the circular
boundary parts of the annulus

{Z: T'min < |Z| <rmax}

and, consequently,

1 dz| 1 F'max
z2)|dz| =— —|=-1o >1. 2.13
J G L e e (213)
If rmax <€ Fmin, then
/ (2)]dz] > — /dz >1 (2.14)
: P3 /ZU(rmin) g - = 1. .

Comparing (2.11)—(2.14), we obtain (2.10).
By the definition of the module (see [13]) we get

3
mr)< [ 0@ @)<Y [ ) dn) (2.15)
=1

where dm(z) stands for the 2-dimensional Lebesgue measure.
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An easy computation shows that
2
Z /pjz(z) dm(z) <cs. (2.16)
=1

To estimate the third integral in (2.15) we write

1 1 1 _ -
[ @ dnta = | U N A A Cal

C20(e ) m 2 w  vle T r)r

1 1 L B |
< -log— 4+ &¢ /—F<Elog;+C9. (2.17)
uj

~
T amn plte

The required inequality (2.9) follows from the combination of (2.15)—(2.17). O

3. Polynomial approximation on a quasidisk

Let f be analytic in G5, 0<d<1. We describe a construction of polynomials

approximating f in Gs (for more details, see [1]). Consider an antiderivative of £ i.e.,
the function

Fo= | r@d <G
pACS

where 7({)=Gj; is an arbitrary rectifiable arc joining 0 and {. We are going to
describe the structural properties of f in terms of its local modulus of continuity

wf,:,ﬁ(h): max | f(z) —f(0)|, zeGs, h>0.

{eGy )z—(|<h

We will need the continuous extension of F into the complex plane which preserves
its smoothness properties. The corresponding construction, proposed by Dyn’kin
[9,10], is based on the Whitney unity partition (see [15]) and properties of the local
modulus of continuity of F. Note that for any z,{eG; there exists an arc y< Gj,
joining z and {, whose length |y| satisfies the condition (cf. [1, p. 24])

Iz =Ll (3.1)

A slight modification of the reasoning in [9,10,15], as well as an application of (3.1),
gives the following result (cf. [1, pp. 13—15]).

Lemma 4. The function F can be continuously extended from Gs to C (we preserve the
notation F for the extension) such that:

(i) F(z) = 0 for z with d(z,Gs) =3, i.e., F has compact support;
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(ii) for zeC\Gs,

’8F(z)

f25,Gs

where zs€ Ls is an arbitrary point among the ones that are closest to z;
(iii) for ze Gy,
. L [ 9F() dn()
f(Z) = / —_— 5
o, 9 ((-2)

In order to approximate the Cauchy kernel 1/({ — z), zeG, {€Q, by polynomial
kernels of the form

n

Ki((2) =) a0, (3.2)

7=0

we use the functions K, x.({,z) introduced by Dzjadyk (see [8, Chapter 9] or [I,
Chapter 3]). Taking them as a basis for our discussion we mention the following
result. Let

£=2, =Y[(1+1/n)0(z)], zelQ.

Lemma 5. Let k,m,seN. Then for any neN there exists a polynomial kernel of the
form (3.2) such that the following relation holds for = 0,1, ...,s, ze G and { € Q with
d({,L)<3:

1

/1
@(E—Kn@, )) |é |1+1

< 1 < |Z()—Z~0| >m
e =2 TN = 2]+ |20 — 2ol

where zy€ L is an arbitrary point on L among the ones that are the closest to z.

g-¢f

—Zz

We now turn to the

Proof of Lemma 1. Let f == f54. According to Lemma 4

f(Z):/Q_ ) dm((), zeG,

where

19F(()

0= |5

-\<w.f7557?5(23|4’ - C(S')-
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We define an auxiliary polynomial 7,eP,_; as follows

ty(z) = /I(C)gK,,(C,Z) dm(l), zeG,
Qs z

where K,({,z) is a polynomial kernel from Lemma 5. By this lemma for ze G we
have

wf,;@(zsw - Z|) < ‘ZQ — Z~0|

76 - 0EI< | e

Qs |C—Z|2

) anto) (33)

Next we estimate o, _ (), zeG, for d(z, L) <h< diam Gs.

Let ze G and {e G;s be such that |z — {|<h, and let 2/ == e ¢p,5(z), ' = e¢p,5(0).
By Andrievskii and Ruscheweyh [2, (7)]

— 2
/() =S Q) |2 = 102 = {1+ 1 =2
d(f).T) S (1 S ERa—D ) |

Since
|1 _Z/C_I‘<‘l _ C/C_/| + |C/5l _Z/§/|<l _ |€/|2 + |Z/ _ C/|,

it immediately follows that

@ -sOl_(, ., -t 2o\’
A(G).T) <1 e - e |z'|> |

Taking into account the fact that d({, Lrs) < |{ — z| and d(z, Lys) <|{ — z| by using
Lemma 3 we obtain 1 — |{'|<|{’ — Z/| and 1 — |Z/| g |{’ — Z/|. Therefore,

S () ()

Further we note that

2 —{ < | — | >
< :
1— |Z’| d(z, ng)

and by (2.1)

Ed <|c—z ) (c—z| ) (IC—ZI )
117 S\d@ L)) S e an\d@ L)) ~\dGo 1))

These lead to

oy =700 (52" (3.4

(20, Las
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from which, by (3.3) and (3.4) for ze G, we obtain

()= t@] o —2" [ dn(Q)
d(f(Z)’r) ﬁd(Z(),Lé)C/QO C—Z|m+2_c

|z — Zo|™ em (120 =2\
<200 e L)
S dGo L YGRS G

Therefore, fixing arbitrary k€N and taking m sufficiently large we have

B 270 — 20\ " =
16 - nE=dre.0 (50 26 (35

Since by Lemma 3

|20 — 20| _ 20 — Zof ’
< <
d(z,Ls) " d(zo,Ls) né
for 6 = ¢3/n with sufficiently large ¢3, we obtain

()~ 1(2)] 1
a(f),0) 2 G0

Denote by y({), {(eC, a quasiconformal reflection with respect to L, i.e., an
antiquasiconformal mapping y: C—C with the properties y(y(z)) =z, y(G) =
Q, y(Q) = G that keeps the points of L invariant (see [1,13]). For {e G we set

t= v ((147)000).

Since for z,{e G, z#(, a straightforward induction on m gives

m éz C j—1 (C_C)m
= (g_z)(f_z)m

the polynomial (in z)

b

J

]18/1

0u(¢,2) :§j ]_1 5 kn(C.2)

j=1
satisfies, for ze L, the following inequalities:

1 -4
’Cz it ‘ E:|z—z\f~ -2l -

- 1
=2l -
Hence, the polynomial (in z)

Va(,z2) =1 = ({ = 2)0n((,2)

—Z
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satisfies

=

(eqG, zeL. (3.7)

1Vl 2)] <

— Z
We also consider the polynomial (in z)

O = OVt (6 7) + 2=

C fn(O),

uy(z) = uy(¢,z) =

e N

which has the properties

un(0) = —1,(0),  ua(8) =1 () = 1u(0). (3.8)
Furthermore, for ze L and (e G, |{|>¢;, (2.1), (3.5) and (3.7) imply that

-t
{—=¢

(—z
m

I’HI 1

! nke

‘ m

|4a(2))| %d(f(C),F)‘

V]
U
—_

[§] UV
|
S
S

\
N,

NN
[

N, v
P

—_

[N
|
U

We claim that for § = ¢3/n with sufficiently large ¢; the inequality
lun(2)] 1
— < zel 3.9
/.02 32

holds.
By using a variant of Lowner’s inequality on the distance between level curves (see

e.g. [1, p. 61]) and (2.4) we obtain
d(f(z),I =0 zelL.
Therefore, in order to establish (3.9) it is enough to show that the expression

d(f(0),T)
d(f(2),D)|z-¢

can be made arbitrarily small if ¢; is selected large enough. Assume first that
d(f(0),I<2d(f(z),T). Then in view of Lemma 3, we obtain

z—Z - D(z) — D(2) "
2= To@z) - o@)
and (3.9) follows. Assume now that

d(f(0),1)>2d(f(2),T).

z—72

B((,z) =

N
—SE
<6

B({,2)<2
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Thus,
: L :
A/ (). 1)1 1)

By (3.4) we conclude that

@ —fOl (==
dU@I)<QQMQ

and for s>c¢

¢ ~|
z—2Z

< < 2= 7] >“<c“‘
z - " \d(z, L) AR
which also proves (3.9). Consider the polynomial
Pn(z) = ta(2) + tn(2).
According to (3.6), (3.8) and (3.9) it has the necessary properties, that is,

€]
d(Z,L(;)

B((,z)<

pn(o) =0, pn(C) :f(C)v pn(G)CD' O
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