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Abstract

Let GCC and DCC be simply connected domains such that 0AG-D: Denote by

Pn; nAN :¼ f1; 2;yg; the set of all complex polynomials of degree at most n: Let

PnðG;DÞ :¼ fpAPn: pð0Þ ¼ 0; pðGÞCDg:

Our main purpose is to find how large, i.e., how close to D; the ‘‘maximal polynomial range’’

DnðGÞ :¼
[

pAPnðG;DÞ
pðGÞ

can be. We consider G to be a quasidisk and D to be an arbitrary domain whose boundary

consists of more than two points.

Published by Elsevier Science (USA).

Keywords: Maximal range; Polynomial; Quasiconformal maps

1. Introduction and main result

The notion of maximal ranges of polynomial spaces in the unit disk D :¼
fw: jwjo1g has been introduced in [5] and studied in [2,4,6,7,11,12] (for the
survey of the various aspects of this notion, see [3]). This idea led to a unified
approach to different inequalities for polynomials with constrains to their images
of D:

In this paper we generalize this concept by considering a quasidisk GCC (see [13])
instead of D:
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Let GCC and DCC be simply connected domains such that 0AG-D: Denote by
Pn; nAN :¼ f1; 2;yg; the set of all complex polynomials of degree at most n: Let

PnðG;DÞ :¼ fpAPn: pð0Þ ¼ 0; pðGÞCDg:

Our main purpose is to find how large, i.e., how close to D; the ‘‘maximal polynomial
range’’

DnðGÞ :¼
[

pAPnðG;DÞ
pðGÞ

can be. We consider G to be a quasidisk, i.e., a finite domain bounded by a
quasiconformal curve L :¼ @G: A geometric characterization of quasiconformal
curves can be stated as follows (see [13, p. 100]): L is a quasiconformal curve iff there
exists a constant c40; depending only on L; such that for z1; z2AL;

minfdiam L0; diam L00gpc jz1 � z2j; ð1:1Þ

where L0 and L00 denote the two arcs that L\fz1; z2g consists of and diam E is the
diameter of a set ECC: Thus, we exclude regions with cusps on the boundary.

Let the boundary G ¼ @D of D consists of more than two points, and let O :¼ C\G

and D :¼ C\D denote, respectively, the exterior (in the extended complex plane

C :¼ C,fNg) of G and D: Next we introduce conformal mappings

F : O-D; FðNÞ ¼ N; F0ðNÞ40;

f : G-D; fð0Þ ¼ 0; f0ð0Þ40;

*f : D-D; *fð0Þ ¼ 0; *f0ð0Þ40;

and the inverse mappings C :¼ F�1;c :¼ f�1 and *c :¼ *f�1: For the homeomorph-
ism g :¼ f3C of the unit circle T :¼ fw: jwj ¼ 1g onto itself we define

aðdÞ ¼ aðd;GÞ :¼ min
wAT

jgðwÞ � gðweidÞj; 0odpp:

The function aðdÞ depends on geometric properties of G; we mention two examples.
In the case G ¼ D we have

2d
p
paðd;DÞ ¼ 2 sin

d
2
pd: ð1:2Þ

The case of a piecewise smooth curve L is less trivial. Following [14], a smooth
Jordan curve L is called Dini-smooth if the angle bðsÞ of the tangent, considered as a
function of the arc length s; satisfies

jbðs2Þ � bðs1Þjohðs2 � s1Þ ðs1os2Þ;

where hðxÞ is an increasing function for whichZ 1

0

hðxÞ
x

dxoN:

We call a Jordan arc Dini-smooth if it is a subarc of some Dini-smooth curve.
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It follows from well-known distortion properties of conformal mappings f and C
(see [14, Chapter 3]) that if L consists of a finite number m of Dini-smooth arcs which
meet under inner angles bjp; 0objo2; j ¼ 1;y;m with respect to G; then

1

c1
dbpaðdÞpc1 d

b; ð1:3Þ

where

b ¼ bðGÞ :¼ max
2 � min1pjpm bj

min1pjpm bj

; 1

( )
ð1:4Þ

and c1 ¼ c1ðGÞ41 is a constant.
Note that according to (1.4), bX1:

Following [2] we relate DnðGÞ to the images *csðDÞ; where

*csðzÞ :¼ *cðð1 � sÞzÞ; 0oso1; zAD:

Theorem. There exist constants c040 and n0AN that depend only on G; such that

*cc0að1=nÞðDÞCDnðGÞ; n4n0: ð1:5Þ

If we let G ¼ D in the theorem above and take into account (1.2), then we obtain
the second part of [2, Theorem 1] which is sharp for all unbounded domains [2,
Theorem 2] and some bounded domains [3, Theorem 14].

Observe that for any quasidisk G;

aðdÞpc2d; c2 ¼ c2ðGÞ40; 0odop:

For domains with piecewise Dini-smooth boundary the above property follows from
(1.3) and (1.4). For general quasidisks this property can be easily proved by applying
the general distortion theory for conformal mappings, see [1]. From the comparison
of the theorem above and [2, Theorem 1] we see the surprising fact that the estimate

of the size of DnðGÞ; measured in terms of function *c; is worst for the unit disk. The
proof of the theorem above is a straightforward combination of the following two
lemmas. Let

Ld :¼ fz: jFðzÞj ¼ 1 þ dg; d40:

Denote by fd the conformal mapping of the domain Gd :¼ int Ld; onto D normalized

by the conditions fdð0Þ ¼ 0; f0
dð0Þ40: Here and in the sequel ‘‘int’’ means the

interior of the indicated Jordan curve. For d40 and real y set

fd;yðzÞ :¼ *c½eiyf2dðzÞ�; zAG2d:

Lemma 1. There exist constants c340 and n1AN with the following property:

For any nAN; n4n1; d ¼ dn :¼ c3=n and zAG there is a polynomial pd;y;n;zAPnðG;DÞ
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such that

fd;yðzÞApd;y;n;zðGÞ:

For the proof, see Section 3.
In order to state the second lemma we introduce a local version of the function

aðdÞ: For 0odpp; zAL ¼ @G and g :¼ f3C set

azðdÞ :¼ jgðeidfðzÞÞ � gðfðzÞÞj:

Lemma 2. For any 0odp1 and zAL the inequality

1 � jfdðzÞjpc4azðdÞ ð1:6Þ

holds with some constant c4 ¼ c4ðGÞ40:

For the proof, see Section 2.

Proof of Theorem. From Lemma 1 we conclude that for n4n1;

DnðGÞ*
[

0pyp2p

fc3=n;yðGÞ ¼ *c w: jwjpmax
zAL

jf2c3=nðzÞj
� �� �

:

In view of Lemma 3 below and the reasoning in the beginning of Section 2 the
function aðdÞ satisfies

að2dÞpc5aðdÞ; d40;

with some constant c5 ¼ c5ðGÞ40: Hence, Lemma 2 for sufficiently large n yields

DnðGÞ* *c w: jwjp1 � c4 min
zAL

az

2c3

n

� �� �� �

* *c w: jwjp1 � c0 a
1

n

� �� �� �
: &

We conclude this section with additional notations we use throughout the rest of the
paper. Let c; c1; c2;y and m; k; l; sAN be sufficiently large (41) constants. Let also
e; e1;y be sufficiently small ðo1Þ positive constants. The same symbol (e.g. c1) may
mean different constants in different relations.

We use for a40 and b40 order inequality a%b if apcb: We also use a^b for
a%b and b%a simultaneously.

For subsets A;BCC we set

dðA;BÞ ¼ distðA;BÞ :¼ inf
zAA;zAB

jz � zj:
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2. Quasiconformal mappings

Let L be a K-quasiconformal curve (see [13]). It is well known that f and F can be

extended to K2-quasiconformal homeomorphisms of C onto itself. Slightly abusing

the notation, we continue to write F : C-C for the latter and denote by f� : C-C

the former. In view of Lemma 3 below we prefer to work with quasiconformal
homeomorphisms of the complex plane that preserve the point at N: The mapping
F satisfies this condition by definition. If f�ðNÞ ¼ N; then for the inner conformal

mapping f we have the necessary quasiconformal extension f :¼ f�: If f�ðNÞ ¼
w0aN we modify f� in the following way.

The function hbðzÞ ¼ hbðx þ iyÞ :¼ x þ iby; where 1oboN is a parameter, maps
the upper half plane, b-quasiconformally, onto itself. Combining this function with
Möbius transformations we construct a ðjw0j þ 1Þ=ðjw0j � 1Þ ¼: K1-quasiconformal
homeomorphism m : D-D with mðw0Þ ¼ N and mðwÞ ¼ w on the unit circle T:

Hence, m3f� is the required K2 ¼ K2K1-quasiconformal extension of f: We denote

m3f� also by f: The inverse mappings c :¼ f�1 and C :¼ F�1 are also

quasiconformal with coefficients of quasiconformality K2 and K2; respectively.
Next we recall one auxiliary fact from the theory of quasiconformal mappings.

Lemma 3 (Andrievskii et al. [1, p. 97]). Suppose a function w ¼ FðzÞ is a K-
quasiconformal mapping of the extended complex plane onto itself, with FðNÞ ¼ N:
Assume also that zjAC;wj :¼ FðzjÞ; j ¼ 1; 2; 3: Then,

(i) the conditions jz1 � z2jpc1jz1 � z3j and jw1 � w2jpc2jw1 � w3j are equivalent,
besides, the constants c1 and c2 are mutually dependent and also depend on K ;

(ii) if jz1 � z2jpc1jz1 � z3j; then

e1
w1 � w3

w1 � w2

				
				
1=K

p
z1 � z3
z1 � z2

				
				pc3

w1 � w3

w1 � w2

				
				
K

;

where e1 ¼ e1ðc1;KÞ; c3 ¼ c3ðc1;KÞ:

As a first direct consequence of Lemma 3 we formulate the following statement.
Let F be as in Lemma 3, and let z1; z2; z1; z2AC be such that

jz1 � z2j^jz1 � z2j%jz1 � z1j:

Then,

Fðz1Þ � Fðz1Þ
Fðz1Þ � Fðz2Þ

				
				% Fðz1Þ � Fðz1Þ

Fðz1Þ � Fðz2Þ

				
				
K2

: ð2:1Þ

Observe that the level curve Ld is K2-quasiconformal. This condition ensures that fd

can be extended quasiconformally to C such that fdðNÞ ¼ N: We do this in the
following way.
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For zAOd :¼ C\Gd we set

f�
dðzÞ :¼ fd C

ð1 þ dÞ2

FðzÞ

 ! !2
4

3
5
�1

:

This function is a K2-quasiconformal mapping of Od onto D; whose boundary values
coincide with boundary values of fd:

If Cð0Þ ¼: x0 ¼ 0; then f�
dðNÞ ¼ N and we necessarily obtain the K1 ¼ K2-

quasiconformal extension of fd by setting fd ¼ f�
d in Od:

If x0a0 we modify f�
d as follows. By Schwarz’s lemma, applied to the function

fd3c; we obtain

1

jf�
dðNÞj ¼ jfdðx0Þjojfðx0Þj:

Therefore, if we reason as in the beginning of this section we derive that there exists a

quasiconformal mapping md : D-D with mdðwÞ ¼ w on T and mdðf�
dðNÞÞ ¼ N;

whose coefficient of quasiconformality is at most

jf�
dðNÞj þ 1

jf�
dðNÞj � 1

o
1 þ jfðx0Þj
1 � jfðx0Þj

:

The function fd :¼ md3f
�
d in Od is a required K1 ¼ K1ðG;KÞ-quasiconformal

extension of fd:
The quasiconformal extensions above show that to study the metric properties of

F and fd we can use Lemma 3. Moreover, all constants in this lemma depend only
on G and K and they are independent of d:

Let S ¼ Sd :¼ fdðLÞ: For tAD\f0g we set tT :¼ t=jtj: Note that for any
tAT; t1; t2AS-½0; t� we have

jt1 � tj^jt2 � tj: ð2:2Þ

Indeed, without loss of generality we may assume that t ¼ 1: Since J7 :¼
½�1; 1�,ft: jtj ¼ 1;7Im t40g are K0-quasiconformal (recall the Ahlfors criterium

(1.1)), the curves F3cdðJ7Þ are K0K2K1-quasiconformal. Therefore, by (1.1) we have

jF3cdðt1Þ � F3cdðtÞj^jF3cdðt2Þ � F3cdðtÞj;

from which (2.2) follows by virtue of Lemma 3.

For tAD\f0g; denote by tS the point of ½0; tT�-S with the smallest modulus. The
discussion above shows that

jF3cdðtSÞ � F3cdðtÞj%dpjx� F3cdðtÞj

holds for any xAT: Hence, setting x so that

jfd3CðxÞ � tj ¼ dðt;SÞ;

and making use of Lemma 3, we obtain

jt� tSj%dðt;SÞ: ð2:3Þ
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Furthermore, from Lemma 3, for tAT and do1 we obtain

dp2
F3cdðtSÞ � F3cdðtÞ
F3cdð0Þ � F3cdðtÞ

				
				% tS � t

0 � t

			 			e1¼ jt� tSje1 : ð2:4Þ

Next, for any t;wAT with jt� wjp2jt� tSj we have

jw � wSj^jt� tSj: ð2:5Þ

Indeed, setting

n :¼ F3cdðtÞ; nS :¼ F3cdðtSÞ;

Z :¼ F3cdðwÞ; ZS :¼ F3cdðwSÞ;

and using Lemma 3 we obtain

jn� Zj%d^jn� nSj^jZ� ZSj:

Furthermore, since

jn� nSj^jZ� nSj^jZ� ZSj;

an application of Lemma 3 gives

jt� tSj^jw � tSj^jw � wSj:

Our next objective is to show that for any t;wAT with jt� wjXjt� tSj the
inequality

jw � wSj%jt� tSjejt� wj1�e ð2:6Þ

holds.
Indeed, by making use of Lemma 3 for points n; nS; Z; ZS; introduced above we

have

jn� Zjkd^jn� nSj^jZ� ZSj:

Thus, by Lemma 3

w � wS

w � t

			 			% Z� ZS

Z� n

				
				
e2

^
n� nS

n� Z

				
				
e2

%
t� tS

t� w

			 			e3 ;
which gives (2.6) with e :¼ e3:

Proof of Lemma 2. Let t :¼ fdðzÞ: We may assume that d is sufficiently small, so that
the constructions below are well defined. For simplicity we also assume that tT ¼
1; t ¼ tS (cf. (2.2)). Set h :¼ 1 � t:

According to (2.3), (2.5) and (2.6) there exist constants e and c1 such that the curve

freiy : r ¼ c1h; jyjphg, reiy: r ¼ c1hejyj1�e; hpjyjpp
2

n o
, reiy: r ¼ c1

p
2

� �1�e
he;

p
2
pjyjpp

� �

lies in the interior of S:
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Set w :¼ f3cd; t1 :¼ 1 � 4c1h; wðtÞ ¼: x; wðt1Þ ¼: x1; cdðt1Þ ¼: z1: Then Lemma 3
gives

jz � z1j^jz � cdð1Þj^dðz;LdÞ^jz �CðeidFðzÞÞj;

and therefore

jx� x1j^azðdÞ: ð2:7Þ

Denote by G0 ¼ G0ðt; t1; int SÞ the family of all cross-cuts of int S which separate
points t and t1 from 0 in int S:

Observe that inequality (1.6) follows from the estimate

mðG0Þp
1

p
log

1

h
þ c2: ð2:8Þ

Indeed, taking into account the conformal invariance of moduli (see [13]), [2, Lemma
8], (2.7) and (2.8), we have

1

p
log

1

azðdÞ
� c3p

1

p
log

1

jx� x1j
pmðwðG0ÞÞ

¼mðGÞp1

p
log

1

h
þ c2;

from which (1.6) follows.
In order to prove (2.8) we first simplify (geometrically) our reasoning by using the

auxiliary Möbius transformation

nðtÞ :¼ 1 � t
1 þ t

:

Then if we set nðtÞ ¼: u; nðt1Þ ¼: u1; we see that

h

2
puph;

2c1up2c1hpu1p4c1hp8c1uo1:

Moreover, there exist constants e1 and c4 such that the function

vðrÞ :¼ p
2
max e1; 1 � c4

h

r

� �e� �

satisfies

freiy: u1prp1; jyjpvðrÞgCnðint SÞ:

Inequality (2.8) follows directly from the estimate

mðG0Þ ¼ mðG0Þp 1

p
log

1

u
þ c5; ð2:9Þ

where G0 :¼ nðG0Þ:
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In order to prove (2.9) we consider the following functions:

r1ðzÞ ¼ c6; jzjp2; Re zX0;

r2ðzÞ ¼
c7

u
; jzjp2u1; Re zX0;

r3ðzÞ ¼
1

2vðjzje�pÞjzj; u1pjzjp1; Re zX0:

We extend these functions to be 0 in the rest of the complex plane, and we set

rðzÞ :¼ maxfr1ðzÞ; r2ðzÞ; r3ðzÞg; zAC:

We claim that constants c6 and c7 can be chosen so that, for any gAG0; the inequalityZ
g
rðzÞjdzjX1 ð2:10Þ

holds.
To verify (2.10) we consider three particular cases. Let jgj denote the length of g:
Let g-Ta|: Then jgjXe2: If we take c6 ¼ 1 þ 1=e2; thenZ

g
r1ðzÞjdzjX1: ð2:11Þ

Let g-fz: jzj ¼ ju1jga|: Then jgjXe3u: Taking c7 ¼ 1 þ 1=e3; we haveZ
g
r2ðzÞjdzjX1: ð2:12Þ

Let gCfz: u1ojzjo1g; and
rmax :¼ sup

zAg
jzj; rmin :¼ inf

zAg
jzj:

If rmaxXeprmin; then there exists a g1 with g1Cg; which connects the circular
boundary parts of the annulus

fz: rminojzjormaxg
and, consequently,Z

g
r3ðzÞjdzjX1

p

Z
g1

dz

z

					
					X1

p
log

rmax

rmin
X1: ð2:13Þ

If rmaxoeprmin; thenZ
g
r3ðzÞjdzjX 1

2vðrminÞ

Z
g

dz

z

				
				X1: ð2:14Þ

Comparing (2.11)–(2.14), we obtain (2.10).
By the definition of the module (see [13]) we get

mðG0Þp
Z

r2ðzÞ dmðzÞp
X3

j¼1

Z
r2

j ðzÞ dmðzÞ; ð2:15Þ

where dmðzÞ stands for the 2-dimensional Lebesgue measure.
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An easy computation shows that

X2

j¼1

Z
r2

j ðzÞ dmðzÞpc8: ð2:16Þ

To estimate the third integral in (2.15) we writeZ
r2

3ðzÞ dmðzÞ ¼
Z 1

u1

dr

2vðe�prÞr ¼
1

p

Z 1

u1

dr

r
þ 1

2p

Z 1

u1

p� 2vðe�prÞ
vðe�prÞr dr

p
1

p
log

1

u1
þ c4epehe

e1p

Z 1

u1

dr

r1þep
1

p
log

1

u
þ c9: ð2:17Þ

The required inequality (2.9) follows from the combination of (2.15)–(2.17). &

3. Polynomial approximation on a quasidisk

Let f be analytic in G2d; 0odo1: We describe a construction of polynomials

approximating f in Gd (for more details, see [1]). Consider an antiderivative of f ; i.e.,
the function

FðzÞ :¼
Z
gðzÞ

f ðxÞ dx; zAGd;

where gðzÞCGd is an arbitrary rectifiable arc joining 0 and z: We are going to
describe the structural properties of f in terms of its local modulus of continuity

o
f ;z;Gd

ðhÞ :¼ max
zAGd;jz�zjph

j f ðzÞ � f ðzÞj; zAGd; h40:

We will need the continuous extension of F into the complex plane which preserves
its smoothness properties. The corresponding construction, proposed by Dyn’kin
[9,10], is based on the Whitney unity partition (see [15]) and properties of the local

modulus of continuity of F : Note that for any z; zAGd there exists an arc gCGd;
joining z and z; whose length jgj satisfies the condition (cf. [1, p. 24])

jgj%jz � zj: ð3:1Þ

A slight modification of the reasoning in [9,10,15], as well as an application of (3.1),
gives the following result (cf. [1, pp. 13–15]).

Lemma 4. The function F can be continuously extended from Gd to C (we preserve the

notation F for the extension) such that:

(i) FðzÞ ¼ 0 for z with dðz;GdÞX3; i.e., F has compact support;
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(ii) for zAC\Gd;

@FðzÞ
@ %z

				
				%o

f ;zd;Gd
ð23dðz;GdÞÞ;

where zdALd is an arbitrary point among the ones that are closest to z;
(iii) for zAGd;

f ðzÞ :¼ �1

p

Z
Od

@FðzÞ
@ %z

dmðzÞ
ðz� zÞ2

:

In order to approximate the Cauchy kernel 1=ðz� zÞ; zAG; zAO; by polynomial
kernels of the form

Knðz; zÞ ¼
Xn

j¼0

ajðzÞz j; ð3:2Þ

we use the functions Kr;m;k;nðz; zÞ introduced by Dzjadyk (see [8, Chapter 9] or [1,

Chapter 3]). Taking them as a basis for our discussion we mention the following
result. Let

z̃ ¼ z̃1=n :¼ C½ð1 þ 1=nÞFðzÞ�; zAO:

Lemma 5. Let k;m; sAN: Then for any nAN there exists a polynomial kernel of the

form (3.2) such that the following relation holds for l ¼ 0; 1;y; s; zAG and zAO with

dðz;LÞp3:

@l

@zl

1

z� z
� Knðz; zÞ

� �				
				% 1

jz� zjlþ1

*z� z
*z� z

				
				
k

%
1

jz� zjlþ1

jz0 � z̃0j
jz� zj þ jz0 � z̃0j

� �m

;

where z0AL is an arbitrary point on L among the ones that are the closest to z:

We now turn to the

Proof of Lemma 1. Let f :¼ fd;y: According to Lemma 4

f ðzÞ ¼
Z
Od

lðzÞ
ðz� zÞ2

dmðzÞ; zAG;

where

jlðzÞj ¼ �1

p
@FðzÞ
@ %z

				
				%o

f ;zd;Gd
ð23jz� zdjÞ:
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We define an auxiliary polynomial tnAPn�1 as follows

tnðzÞ :¼
Z
Od

lðzÞ @
@z

Knðz; zÞ dmðzÞ; zAG;

where Knðz; zÞ is a polynomial kernel from Lemma 5. By this lemma for zAG we
have

j f ðzÞ � tnðzÞj%
Z
Od

o
f ;z;Gd

ð25jz� zjÞ
jz� zj2

jz0 � z̃0j
jz� zj þ jz0 � z̃0j

� �m

dmðzÞ: ð3:3Þ

Next we estimate o
f ;z;Gd

ðhÞ; zAG; for dðz;LdÞohp diam Gd:

Let zAG and zAGd be such that jz � zjph; and let z0 :¼ eiyf2dðzÞ; z0 :¼ eiyf2dðzÞ:
By Andrievskii and Ruscheweyh [2, (7)]

j f ðzÞ � f ðzÞj
dð f ðzÞ;GÞ p 1 þ 2

jz0 � z0jðjz0 � z0j þ j1 � z0 %z0jÞ
ð1 � jz0j2Þð1 � jz0j2Þ

 !2

:

Since

j1 � z0 %z0jpj1 � z0 %z0j þ jz0 %z0 � z0 %z0jp1 � jz0j2 þ jz0 � z0j;

it immediately follows that

j f ðzÞ � f ðzÞj
dð f ðzÞ;GÞ p 1 þ 4

jz0 � z0j2

ð1 � jz0jÞð1 � jz0jÞ þ 2
jz0 � z0j
1 � jz0j

 !2

:

Taking into account the fact that dðz;L2dÞ%jz� zj and dðz;L2dÞ%jz� zj by using

Lemma 3 we obtain 1 � jz0j%jz0 � z0j and 1 � jz0j%jz0 � z0j: Therefore,

j f ðzÞ � f ðzÞj
dð f ðzÞ;GÞ %

jz0 � z0j
1 � jz0j

� �2 jz0 � z0j
1 � jz0j

� �2

:

Further we note that

jz0 � z0j
1 � jz0j %

jz� zj
dðz;L2dÞ

� �c1

;

and by (2.1)

jz0 � z0j
1 � jz0j %

jz� zj
dðz;L2dÞ

� �c1

% sup
zALd;jz�zjph

jz� zj
dðz;L2dÞ

� �c1

%
jz� zj

dðz0;L2dÞ

� �c2

:

These lead to

o
f ;z;Gd

ðhÞ%dð f ðzÞ;GÞ h

dðz0;L2dÞ

� �c

; ð3:4Þ
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from which, by (3.3) and (3.4) for zAG; we obtain

j f ðzÞ � tnðzÞj
dð f ðzÞ;GÞ %

jz0 � z̃0jm

dðz0;LdÞc

Z
Od

dmðzÞ
jz� zjmþ2�c

%
jz0 � z̃0jm

dðz0;LdÞc½dðz;LdÞ�c�m
%

jz0 � z̃0j
dðz;LdÞ

� �m�c

:

Therefore, fixing arbitrary kAN and taking m sufficiently large we have

j f ðzÞ � tnðzÞj%dð f ðzÞ;GÞ jz0 � z̃0j
dðz;LdÞ

� �k

; zAG: ð3:5Þ

Since by Lemma 3

jz0 � z̃0j
dðz;LdÞ

%
jz0 � z̃0j
dðz0;LdÞ

%
1

nd

� �e

;

for d ¼ c3=n with sufficiently large c3; we obtain

j f ðzÞ � tnðzÞj
dð f ðzÞ;GÞ o

1

2
: ð3:6Þ

Denote by yðzÞ; zAC; a quasiconformal reflection with respect to L; i.e., an
antiquasiconformal mapping y : C-C with the properties yðyðzÞÞ ¼ z; yðGÞ ¼
O; yðOÞ ¼ G that keeps the points of L invariant (see [1,13]). For zAG we set

*z ¼ *z1=n :¼ C 1 þ 1

n

� �
FðyðzÞÞ

� �
:

Since for z; zAG; zaz; a straightforward induction on m gives

1

z� z
¼
Xm

j¼1

ð*z� zÞ j�1

ð*z� zÞ j
þ ð*z� zÞm

ðz� zÞð*z� zÞm
;

the polynomial (in z)

Qnðz; zÞ :¼
Xm

j¼1

ð*z� zÞ j�1

ð j � 1Þ!
@ j�1

@z j�1
Knð*z; zÞ

satisfies, for zAL; the following inequalities:

1

z� z
� Qnðz; zÞ

				
				%Xm

j¼1

j*z� zj j�1

j*z� zj j

z� *z
*z� z

				
				
m

þ 1

jz� zj
*z� z
*z� z

				
				
m

%
1

jz� zj
*z� z
*z� z

				
				
m

:

Hence, the polynomial (in z)

Vnðz; zÞ :¼ 1 � ðz� zÞQnðz; zÞ
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satisfies

jVnðz; zÞj%
*z� z
*z� z

				
				
m

zAG; zAL: ð3:7Þ

We also consider the polynomial (in z)

unðzÞ ¼ unðz; zÞ :¼ z

z
½ f ðzÞ � tnðzÞ�Vn�1ðz; zÞ þ z � z

z
tnð0Þ;

which has the properties

unð0Þ ¼ �tnð0Þ; unðzÞ ¼ f ðzÞ � tnðzÞ: ð3:8Þ

Furthermore, for zAL and zAG; jzj4e1; (2.1), (3.5) and (3.7) imply that

junðzÞj%dð f ðzÞ;GÞ
*z� **z
*z� z

					
					
m
*z� z
*z� z

				
				
m

þ 1

nke

¼ dð f ðzÞ;GÞ
*z� **z
*z� z

					
					
m

þ 1

nke

% dð f ðzÞ;GÞ z � z̃

z � *z

				
				
me

þ 1

nke

% dð f ðzÞ;GÞ z � z̃

z � *z

				
				
s

þ1

nl
:

We claim that for d ¼ c3=n with sufficiently large c3 the inequality

junðzÞj
dð f ðzÞ;GÞo

1

2
; zAL ð3:9Þ

holds.
By using a variant of Löwner’s inequality on the distance between level curves (see

e.g. [1, p. 61]) and (2.4) we obtain

dð f ðzÞ;GÞjdc; zAL:

Therefore, in order to establish (3.9) it is enough to show that the expression

Bðz; zÞ :¼ dð f ðzÞ;GÞ
dð f ðzÞ;GÞ

z � z̃

z � *z

				
				
s

can be made arbitrarily small if c3 is selected large enough. Assume first that
dð f ðzÞ;GÞp2dð f ðzÞ;GÞ: Then in view of Lemma 3, we obtain

Bðz; zÞp2
z � z̃

z � *z

				
				
s

%
FðzÞ � Fðz̃Þ
FðzÞ � Fð*zÞ

					
					
se

%c�se
3

and (3.9) follows. Assume now that

dð f ðzÞ;GÞ42dð f ðzÞ;GÞ:
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Thus,

dð f ðzÞ;GÞp1

2
j f ðzÞ � f ðzÞj:

By (3.4) we conclude that

j f ðzÞ � f ðzÞj
dð f ðzÞ;GÞ %

jz� zj
dðz;LdÞ

� �c

and for s4c

Bðz; zÞ% j*z� zj
dðz;LdÞ

 !c
z � z̃

z � *z

				
				
s

%
jz � z̃j

dðz;LdÞ

� �s�c

%cc�s
3 ;

which also proves (3.9). Consider the polynomial

pnðzÞ :¼ tnðzÞ þ unðzÞ:

According to (3.6), (3.8) and (3.9) it has the necessary properties, that is,

pnð0Þ ¼ 0; pnðzÞ ¼ f ðzÞ; pnðGÞCD: &
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